A Multi-stage Representation of Cell Proliferation as a Markov Process

نویسندگان

  • Christian A Yates
  • Matthew J Ford
  • Richard L Mort
چکیده

The stochastic simulation algorithm commonly known as Gillespie's algorithm (originally derived for modelling well-mixed systems of chemical reactions) is now used ubiquitously in the modelling of biological processes in which stochastic effects play an important role. In well-mixed scenarios at the sub-cellular level it is often reasonable to assume that times between successive reaction/interaction events are exponentially distributed and can be appropriately modelled as a Markov process and hence simulated by the Gillespie algorithm. However, Gillespie's algorithm is routinely applied to model biological systems for which it was never intended. In particular, processes in which cell proliferation is important (e.g. embryonic development, cancer formation) should not be simulated naively using the Gillespie algorithm since the history-dependent nature of the cell cycle breaks the Markov process. The variance in experimentally measured cell cycle times is far less than in an exponential cell cycle time distribution with the same mean.Here we suggest a method of modelling the cell cycle that restores the memoryless property to the system and is therefore consistent with simulation via the Gillespie algorithm. By breaking the cell cycle into a number of independent exponentially distributed stages, we can restore the Markov property at the same time as more accurately approximating the appropriate cell cycle time distributions. The consequences of our revised mathematical model are explored analytically as far as possible. We demonstrate the importance of employing the correct cell cycle time distribution by recapitulating the results from two models incorporating cellular proliferation (one spatial and one non-spatial) and demonstrating that changing the cell cycle time distribution makes quantitative and qualitative differences to the outcome of the models. Our adaptation will allow modellers and experimentalists alike to appropriately represent cellular proliferation-vital to the accurate modelling of many biological processes-whilst still being able to take advantage of the power and efficiency of the popular Gillespie algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Markov Chain to Analyze Production Lines Systems with Layout Constraints

There are some problems with estimating the time required for the manufacturing process of products, especially when there is a variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines need a precise planning to reduce volume in particular situation of lin...

متن کامل

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

Optimal Process Adjustment with Considering Variable Costs for Uni-variate and Multi-variate Production Process (RESEARCH NOTE)

This paper studies a single-stage production system, two-stage production system where specification limits are designed for inspection. When quality characteristics fall below a lower threshold or above an upper threshold, a decision is made to rework or scrap the item. The target is to determine the optimum target for a process based on rework or scrap costs. In contrast to previous studies, ...

متن کامل

A Markov Model to Determine Optimal Equipment Adjustment in Multi-stage Production Systems Considering Variable Cost

Our aim is to maximize expected profit per item of a multi-stage production system by determining best adjustment points of the equipments used based on technical product specifications defined by designer. In this system, the quality characteristics of items produced should be within lower and higher tolerance limits. When a quality characteristic of an item either falls beneath the lower li...

متن کامل

A new machine replacement policy based on number of defective items and Markov chains

  A novel optimal single machine replacement policy using a single as well as a two-stage decision making process is proposed based on the quality of items produced. In a stage of this policy, if the number of defective items in a sample of produced items is more than an upper threshold, the machine is replaced. However, the machine is not replaced if the number of defective items is less than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2017